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Abstract

The abundance of data as well as regulations protecting people’s privacy created
a need for protecting private and personal information in a scalable and efficient way.
Personal data includes sensitive and private information such as health records, banking
transactions and frequent locations. One of the challenges of data anonymization is
when the data anonymity increases its usefulness for analytics or research decreases.
This paper provides an implementation of Top-Down Specialization algorithm for data
anonymization in parallel using Apache Spark which aims to balance data utility and
data privacy. Performance evaluation is done on large datasets of up to 20-million rows
in a variety of different cluster environments.

1 Introduction

Since the introduction of multi-core processors in 2004 by Intel R©, parallel computing evolved
to exploit the advantages of multiple processing units that became the norm for personal
computers. This evolution was also expanded and accelerated by the advancements in
Cloud Computing that supported running compute-intensive applications over a network
of clusters. Parallel computing enabled the development of solutions to different real world
applications that were hindered by scalability limitations such as big data analytics, machine
learning and artificial intelligence. One of the problems that parallel computing provided
scaleable solutions for is data anonymization, especially for big data.

In today’s abundance of big data ranging from retail and banking transactions, health
care, social media interactions and sensor data, a need was created for measures that protect
people’s most private and sensitive data. One of the most popular theories that were
developed in this area was k-anonymity developed by Samarati and Sweeney in 1998 [14].
Sweeney argued that an individual in a dataset can be identified when the dataset is linked
with other public datasets even if the original dataset did not contain identifying information
such as name, date of birth and social insurance number. Sweeney was able to show that
when linking voter registration cards and health care data, individuals can be identified with
87% accuracy. Those potentially identifying attributes are called Quasi-Identifiers (QID). k-
anonymity states that a dataset is called k-anonymous when for a given record, there exists
at least k− 1 records in the same dataset with the same QID values. Further modifications
to k-anonymity were made to overcome its shortcomings such as introducing `-diversity
[8] and t-closeness [7]. `-diversity ensures that sensitive attributes, such as diagnosis in a
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health care dataset, need to have diverse values so that an adversary with foreknowledge of
a given QID set cannot deduce their diagnosis. t-closeness ensures that the distribution of
these diverse values is close to their distribution in the original dataset.

While these theories contributed immensely to the practices of data anonymization, k-
anonymity was proven to be NP-hard by Meyerson and Williams [10]. Further research
used these models as a baseline to develop scalable parallel algorithms that can handle big
data.

The paper is organized as follows: in Section 2, I will go over the different ideas that were
proposed to scale k-anonymity. Section 3 defines the problem and Section 4 details a pro-
posed Top Down Specialization solution in parallel. Section 5 presents the experimentation
results of the algorithm and the paper finally concludes in Section 6.

2 Literature Review

There are three different masking types that are used to satisfy k-anonymity: interval,
taxonomy tree and suppression [1]. Suppression requires certain outlier tuples to be removed
to satisfy k-anonymity [14]. Intervals and taxonomy trees are generalization techniques
applied to numerical and categorical attributes respectively [14]. For example two records
with birth year of 1971 and 1973 can be generalized to 1970-1975. For a taxonomy tree,
a categorical attribute such as education level can have, for example, post-graduate as a
parent node which can have PhD, Masters and Post Graduate Diploma as its child leaves
so that records with these values can be generalized to the parent node. The majority of
research papers on anonymization with respect to big data involved taxonomy trees thus
this is where I focus my literature survey.

One of the techniques that researchers attempted to optimize was Bottom-Up Gener-
alization (BUG) which involves traversing the taxonomy tree of attribute hierarchies from
the bottom (most specific) upwards (most general) [6]. Wang suggested that the taxonomy
tree would be provided by the data supplier or the data recipient [6]. As the tree is tra-
versed, two metrics are calculated to ensure a high quality generalization: information loss
and anonymity gain. An indexed approach to bottom-up generalization was proposed by
Hoang [5] where the taxonomy tree for numerical attributes was generated automatically
at runtime. Hoang’s indexed approach could also handle numerical as well as categorical
attributes. Indexed BUG starts with collecting statistical information about the dataset as
well as partition it so it can be used in the generalization step which was further broken down
to four steps: calculate the best generalization score based on the least information loss,
calculate k-anonymity for every partition, generate an indexed generalization map which
maps every value to its generalized value, and the last step creates the anonymized dataset
using this map. Hoang’s experiments showed that the generalization time did not increase
with the dataset size due to the use of indexed generalization map however performance
was impacted by the distinct values count for each QID [5].

Parallel BUG was introduced to address the limitations of traditional and indexed BUG
approaches. Pandilakshmi attempted to solve the limitations of indexing structures since
they are centralized and hard to parallelize and cannot run on distributed systems such
as the Cloud [11]. Pandilakshmi introduced Bi-Level BUG algorithm where MapReduce
framework was used to take advantage of job-level and task-level parallelization. Job-level
parallelization was achieved by using multiple MapReduce jobs and task-level parallelization
was achieved by using multiple mapper/reducer tasks for every MapReduce job so they are

2



executed in parallel on every partition. Data is partitioned according to a random number
generated between 1 and p where p is the number of partitions. Pandilakshmi then runs
MapReduce BUG driver (MRBUG) iteratively on the partitioned datasets and calculates
generalization score (least information loss with the most anonymity gain) and stops until it
finds the best generalization with the highest score that satisfies k-anonymity. Pandilakshmi
experiments performed on varying datasets of up to 3GB showed that execution time was
virtually capped at ≈33 minutes regardless of dataset size.

Another technique is Top-Down Specialization (TDS). TDS traverses the taxonomy tree
from the top downwards where it starts with the most generalized values and specializes the
value and stops when it violates k-anonymity [4]. Multiple solutions have been developed
such as a scalable two-phase TDS introduced by [13] and [18]. The first phase involves par-
titioning the original dataset to p partitions using random sampling. A MapReduce TDS
job runs in parallel on each partition. Each job specializes the data iteratively while cal-
culating information gain and privacy loss metrics and creates an intermediate anonymized
dataset. In the second phase the intermediate datasets are merged and further anonymized
if necessary to satisfy k-anonymity. In [18], Zhang et al. adopted Hadoop R© and took
advantage of distributed cache capability to pass the intermediate anonymized dataset to
each mapper/reducer node. The experiments for this solution showed an overhead in the
partitioning phase of the dataset.

A hybrid approach of BUG and TDS using MapReduce was introduced by [17] where
it was shown that when either TDS or BUG were used individually, they performed poorly
for certain values of k. The hybrid approach applies TDS for large k values and BUG for
smaller ones. The notion of Workload Balancing Point was introduced which is defined as
the point where the amount of computation required for TDS is the same as BUG. Once
that point is identified, the hybrid approach chooses TDS for k greater than the workload
balancing point and chooses BUG when k is smaller. The workload balancing point is
estimated using the height of the taxonomy tree as a reference.

Al-Zobbi et al [1] argued that finding the highest scoring generalization and specializa-
tion based on information gain and anonymity loss in BUG and TDS require high compu-
tational costs and impedes the ability to parallelize them. Al-Zobbi also argued that as the
data grows in size, the high accuracy of these computations no longer make a statistical
difference. Al-Zobbi proposed a multi-dimensional sensitivity-based algorithm on Apache
Spark that uses a pre-determined QID attributes to anonymize as well as precalculated k
value using linear regression. The solution also takes into consideration the probability value
of each QID. For example assuming that age can range between 1 and 100, the probability
of finding a given age is 1% which is much higher than a probability of finding a given job
title assuming there are 200 different job titles. The solution prioritized the anonymization
of higher probability attributes instead of calculating information gain and anonymity loss
scores for every attribute. The solution also used a role-based access control equivalent
system to set k based on context. For example a health care dataset maybe given a lower k
(less anonymization) when shared with a doctor but a higher k value when shared with an
insurance risk analyst. The solution was implemented on Spark and aimed at minimizing
the use of User Defined Functions (UDFs) since they run outside of the Spark JVM which
is beyond the resource negotiator’s control. Al-Zobbi recognized that this solution would
sacrifice the analytical value of the dataset for the performance improvement gained by not
calculating the best generalization options.

In a research paper by [15], a survey was done on MapReduce vs. Spark for big data
analytics. It concluded that Spark is better suited for problems that require accessing the
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same dataset multiple times such as the case with both TDS, BUG and their variants. The
constant read and write by Hadoop to HDFS (Hadoop Distributed File System) is considered
a significant overhead however Spark operates on datasets in memory and provides the
capability of caching Resilient Distributed Datasets (RDDs) for faster access making it
suitable for iterative algorithms. The experiments carried out by Shi et al in [15] found that
Spark is 5 times faster than MapReduce for iterative algorithms regardless of data size.

Shi’s findings in [15] are inline with other researchers that implemented anonymization
algorithms on Spark such as [2] and [16]. For example, [16] proposed a TDS implementation
for Apache Spark that partitioned the dataset to p partitions on n Spark nodes where
n = p. The master node partitions the data and calculates the scores required by TDS
such as information gain and privacy loss. The scores are sent to the driver node which
performs aggregations required by further iterations until k is satisfied. The experiments
carried out for this solution by [16] showed that there is an overhead cost incurred when
having more than one partition in a single node. The experiments also showed performance
gains regardless of k values and dataset sizes as long as Spark nodes are increased with the
dataset size. As outlined by [1], ideally the partitioned dataset needs to fit in the node’s
memory in order to avoid spilling to disk.

The previously mentioned solutions are generic enough to be applied to any type of
datasets. However, multiple other solutions have been proposed to address specific anonymiza-
tion scenarios. I briefly include them here due to their relevance in terms of parallelization
techniques. Parameshwarappa [12] for example proposed a solution to anonymize physical
activity collected by wearable gadgets. It uses a multi-level clustering algorithm based on
Maximum Distance to Average Vector (MDAV). It attempts to cluster data points so that
every cluster satisfies k-anonymity. If a cluster does not satisfy k-anonymity, differential
privacy technique is used to add statistical noise to the cluster in a way that does not skew
the analytical value of the dataset.

Another solution was implemented to provide a parallel anonymization of transaction
data such as retail and banking datasets in [9]. It uses an algorithm known as RBAT on
MapReduce which uses set-based generalization to anonymize data based on user-provided
set of rules. It partitions data in a way that ensures the workload of every partition is
approximately the same across different partitions. The solution scans the whole dataset in
order to achieve this efficient partitioning based on QID values to minimize data shuffling
across partitions.

Other frameworks were also developed to address specific variations to k-anonymity
mentioned such as t-closeness introduced by [7]. For example, [3] developed a framework
called Incognito using MapReduce that generates a distribution of sensitive attributes based
on their count in the dataset. Given the frequency histogram generated, subsets of the
sensitive attribute values that have the same parent in the taxonomy tree are put together
in the same data bucket. The tree is sorted from left to right nodes in an ascending order
of their frequencies in the generated histogram. The anonymized dataset is then mapped
to the generated tree in order to ensure anonymized dataset is close to the original dataset
in terms of distribution of values.

3 Problem Statement

This paper tackles the scalability of anonymization algorithms for Big Data specifically
Top Down Specialization algorithm. There was only a handful of papers in the literature
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reviewed in Section 2 that implemented anonymization algorithms on Spark and only one
that implemented Top Down Specialization [16]. In that implementation the performance
was assessed only up to 500 MB of data which is relatively small in the context of Big
Data. This paper aims to assess the performance of Top Down Specialization on Spark for
datasets larger than 500 MB. It will also use number of records as the gauge instead of
size on disk. The question I aim to answer, how does Top Down Specialization scale up for
datasets larger than 5 million rows or 500 MB? Are there any optimizations that can be
done to improve speedups?

4 Proposed Solution

4.1 Introduction to k-anonymity

First, it is important to review definitions that will be used throughout this paper:

Definition 1 (k-anonymity) A dataset is called k-anonymous if for every record there
exists at least k − 1 other records with the same Quasi-Identifier values.

Definition 2 (Quasi-Identifiers) Quasi-Identifiers are attributes that do not directly iden-
tify an individual, but when used together and linked with other datasets they have the po-
tential of identifying an individual. They will be referred to as QID throughout the paper.

Definition 3 (Sensitive Attributes) Sensitive Attributes are attributes that should re-
main private so an adversary cannot deduce their values. They will be referred to as SA
throughout the paper.

Definition 4 (Taxonomy Trees) Taxonomy Trees are logical hierarchies of distinct val-
ues in a dataset.

For example, in Table 1 Education, Gender and City are examples of QIDs while
Income is an example of SA. Table 1 does not satisfy k-anonymity since there are two
unique records with the same QID values. In this case an adversary with foreknowledge
of the existence of an Orleans Male with a Master’s degree in the dataset will be able to
deduce the individual’s income. The two records violating k-anonymity are highlighted in
Table 1.

Education Gender City Income

Grade 12 Female Nepean $65,000
Bachelor’s Male Ottawa $50,000
Master’s Male Orleans $50,000

PhD Male Gloucester $100,000
Grade 12 Female Nepean $80,000
Associate Female Kanata $90,000
Associate Female Kanata $105,000
Bachelor’s Male Ottawa $50,000

Table 1: Dataset violating k-anonymity
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Figure 1 represents a taxonomy tree for Education column. The leaf nodes in the tree
represent the distinct values present in the dataset. Taxonomy trees are provided by either
the data provider or the data recipient for all QID in the dataset. The root node of all
taxonomy trees is Any.

Any

Without-Post-Secondary

Preschool Elementary

1st-4th 5th-6th 7th-8th

Secondary

Junior-Secondary

9th 10th

Senior-Secondary

11th 12th HS-grad

Post-secondary

Some-college Assoc

Assoc-acdm Assoc-voc

University

Bachelors Prof-school Post-grad

Masters Doctorate

Figure 1: Education Taxonomy Tree

4.2 Introduction to Top Down Specialization

Top Down Specialization algorithm begins by removing all non QIDs from the dataset.
The resulting dataset is then grouped by QID and SA and the count is calculated for
every group. A set of trees called Anonymization Cuts {AC} is created where it initially
contains the taxonomy trees of all QID. The AC represents the level of the taxonomy
tree to which each QID value will be generalized. The algorithm starts with generalizing
all values to the root of the corresponding AC. The basic idea of the algorithm is that
it starts from the top of the taxonomy tree and specializes the values until k is violated.
However, it does not simply specialize all attributes. It calculates a score for every AC and
only specializes the AC with the highest score. The score which is shown in Equation 1
calculates the information gain per privacy loss for every AC. In other words, which AC
will provide the best information gain and the least privacy loss. Information gain involves
calculating the entropy as well as counting all the values that get generalized to the AC’s
root (|Rν |), the count of all values that get generalized to the AC’s root’s children (|Rνc|),
the count of all values that get generalized to the root for each value in {SA} and finally
the count of all values that get generalized to AC’s root’s children for each value in {SA}.
The whole equation is shown in Equation 2 below. The privacy loss involves calculating k
before specialization minus k after specialization. The reason for this is that as we specialize
values along the AC trees, the data becomes more useful yet less private. The privacy loss
equation is shown in Equation 4. Once the score is calculated, the root AC with the highest
score is removed from {AC} and its children are added as separate trees to the set of {AC}.
That is, AC tree is specialized one level lower. The algorithm re-iterates with the new set
of {AC} until k is violated. The values in the dataset are finally generalized to the root of
the final {AC} set and that represents the anonymized dataset.

Score(ν) =

{
InfoGain(ν)
PrivacyLoss(ν) PrivacyLoss(ν) 6= 0

InfoGain(ν) otherwise
(1)

InfoGain(ν) = I(Rν)−
∑

c∈children(ν)

|Rνc|
|Rν |

I(Rνc) (2)
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I(Rν) = −
∑

sv∈{SA}

|Rνsv|
|Rν |

× log2
|Rνsv|
|Rν |

(3)

PrivacyLoss(ν) = |Rν | −min({|Rνc|}) (4)

Education Gender Age Income count

9th M 30 ≤ 50k 3
10th M 32 ≤ 50k 4
11th M 35 > 50k 2
11th M 35 ≤ 50k 3
12th F 37 > 50k 3
12th F 37 ≤ 50k 1

Bachelors F 42 > 50k 4
Bachelors F 42 ≤ 50k 2
Bachelors F 44 > 50k 4
Masters M 44 > 50k 4
Masters F 44 > 50k 3

Doctorate F 44 > 50k 1

Table 2: Sample preprocessed dataset

Fung et. al provided an example in [4] which helps illustrate the calculations. I include it
here for completeness. Using Table 2 as our dataset, SA in this case is the Income attribute.
AC element to score is the Education taxonomy tree shown in Figure 1 with Any at its
root. Calculating the score of this particular AC is shown below:

Operand Description Value

|Rν | Sum of counts of Education attribute when generalized to Any 34
|Rνsv| Sum of counts of Education attribute when generalized to Any and SA is > 50k 21
|Rνsv| Sum of counts of Education attribute when generalized to Any and SA is ≤ 50k 13
|Rνc| Sum of counts of Education attribute when generalized to Without-Post-Secondary 16
|Rνc| Sum of counts of Education attribute when generalized to Post-Secondary 18
|Rνcsv| Sum of counts of Education attribute when generalized to Without-Post-Secondary and SA is > 50k 5
|Rνcsv| Sum of counts of Education attribute when generalized to Without-Post-Secondary and SA is ≤ 50k 11
|Rνcsv| Sum of counts of Education attribute when generalized to Post-Secondary and SA is > 50k 16
|Rνcsv| Sum of counts of Education attribute when generalized to Post-Secondary and SA is ≤ 50k 2
|Rν | Anonymity before specialization 34

min({|Rνc|}) Anonymity after specialization 16

Plugging these values in Equations 1 through 4 we get:

I(RAny Edu) = (−21

34
× log2

21

34
) + (−13

34
× log2

13

34
) = 0.9597

I(RWithout−Post−Secondary Edu) = (− 5

16
× log2

5

16
) + (−11

16
× log2

11

16
) = 0.8960

I(RPost−Secondary Edu) = (−16

18
× log2

16

18
) + (− 2

18
× log2

2

18
) = 0.5033

InfoGain(Any Edu) = 0.9597− (
16

34
× 0.8960 +

18

34
× 0.5033) = 0.2716
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PrivacyLoss(Any Edu) = 34− 16 = 18

Score(Any Edu) =
0.2716

18
= 0.0151

Once the calculations are done for every tree in AC, let’s say Education Any has the
highest score, then Any is removed from AC set and its subtree rooted at Without-Post-
Secondary is added along with the subtree rooted at Post-Secondary so that the subsequent
iteration calculates the scores of these two subtrees along with the rest of the AC set.

4.3 Pre-Processing

As illustrated by Section 4.2, Top-Down Specialization is an iterative algorithm that in-
volves using the same dataset multiple times to perform different calculations. This type
of algorithms is best suited for Apache SparkTM as shown in Section 2. Spark is a fast and
general-purpose cluster computing system that performs its computations in memory by
default. In order to prepare our dataset for the main algorithm, first we need to remove all
non-QID columns from the dataset. We then perform a group by query for {QID}∪{SA}
with the count of every group as shown in the example in Table 2. Since there are multiple
iterations that involve generalizing values to the root of the trees in AC, we ultimately need
to access the cell value’s root in O(1) time since this will be performed on every cell in the
dataset. Therefore, I present an algorithm that runs during the preprocessing stage to build
path maps from taxonomy trees.

Algorithm 1: Building Parent Child Mapping

Input: children, parentQueue
Output: parentChildMap

1 Function Traverse(children, parentQueue):

2 currentNode ← children[0];
3 currentParent ← Dequeue(parentQueue);
4 parentChildMap ← parentChildMap + (currentNode : currentParent);
5 remainder ← children[1] to children[length− 1];

6 if IsEmpty(children) then
/* No more children to traverse, we are done */

7 return parentChildMap;

8 if IsLeaf(currentNode) then
9 return Traverse(remainder, parentQueue);

10 else
11 currentNodeChildren ← GetChildren(currentNode);
12 foreach child c in currentNodeChildren do Enqueue(currentNode);
13 remainder ← remainder + currentNodeChildren;
14 return Traverse(remainder, parentQueue);

First, we need to build a parent-child mapping by traversing the taxonomy trees in
its entirety in a breadth-first tail-recursive manner as shown in Algorithm 1. The Top-
Down Specialization algorithm implemented for this paper is in Scala since it is the native
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language of Spark. Tail recursion is a feature in Scala which provides a way to calculate
the intermediate results so that the stack does not dramatically increase in size by function
calls as it happens in traditional recursive algorithms. The Traverse function traverses
through every node in the tree. If a node is not a leaf node, it adds the current node to a
queue as many times as its number of children. For example, when we are traversing the
node Any in Figure 1, we see that it has two children, therefore after Line 12, parentQueue
will contain [Any, Any]. This way, when we traverse Without-Post-Secondary and Post-
Secondary we dequeue Any twice, and parentChildMap will contain two elements: [{key:
Without-Post-Secondary, value: Any}, {key: Post-Secondary, value: Any}]

Algorithm 2: Get Path of a Given Node

Input: pathMap, node, currentPath
Output: path

1 Function GetPath(pathMap, node, currentPath):

2 currentParent ← Get(pathMap, node);
3 currentPath ← currentPath + node;
4 if currentParent is null then
5 return currentPath;
6 else
7 return GetPath(pathMap, node, currentPath);

Once we have our full parent-child mapping for every node in the tree, we can then
tail-recursively build the full path for a given node as shown in Algorithm 2.

Algorithm 3: Build Path Map from Taxonomy Tree

Input: taxonomyTree
Output: fullPathMap

1 children ← GetChildren(taxonomyTree);
2 parentQueue ← foreach node n in children do Enqueue(node);

3 parentChildMapping ← Traverse(children, parentQueue);
4 currentPath ← ∅;
5 fullPathMap ← ∅;
6 for key ∈ parentChildMapping do
7 path ← GetPath(parentChildMapping, key, currentPath);
8 fullPathMap ← fullPathMap + (key: Reverse(path));

9 return fullPathMap

Finally, we now have the necessary blocks to build a full path map from a taxonomy
tree as shown in Algorithm 3. From the parent-child map we get the full path. We then
update our fullPathMap with the node as the key and the reversed path as the value.
The reason we reverse the path is that we need to generalize to the root of the tree. After
Algorithm 3 runs, the map for node 9th in Figure 1 will look like {key: 9th, value: [Any,
Without-Post-Secondary, Secondary, Junior-Secondary, 9th]}. Therefore, getting the root
of a node is in constant time since the path map is indexed by the node’s string value.
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4.4 Main Algorithm

p1 p2 p3 p4 p5 p6 p7 pn

Preprocessed
dataset

Total aggregates collected

Figure 2: Performing Aggregations on Spark

Once the preprocessing is done, we are now ready to proceed with the actual anonymiza-
tion. We start by partitioning the preprocessed dataset into multiple partitions as shown
in Figure 2. For every partition, we transform the dataset by creating a column for every
operand required in the score calculation equations. For example, we transform Table 2 to
Table 3 shown below. The columns with Y and N postfixes represent those with SA > 50k
and SA ≤ 50k respectively. The WPS postfix represents count of values that get gener-
alized to Without-Post-Secondary node and PS for Post-Secondary. This transformation
is done for all QID on all worker nodes in parallel however due to the large width of the
resulting dataset I show the example for Education attribute only.

Edu Edu Gen Edu Child Gen Edu Any Edu Any Y Edu Any N Edu WPS Edu PS Edu WPS Y Edu WPS N Edu PS Y Edu PS N

9th Any WPS 3 0 3 3 0 0 3 0 0
10th Any WPS 4 0 4 4 0 0 4 0 0
11th Any WPS 5 2 3 5 0 2 3 0 0
12th Any WPS 4 3 1 4 0 3 1 0 0

Bachelors Any PS 6 4 2 0 6 0 0 4 2
Bachelors Any PS 4 4 0 0 4 0 0 4 0
Masters Any PS 4 4 0 0 4 0 0 4 0
Masters Any PS 3 3 0 0 3 0 0 3 0

Doctorate Any PS 1 1 0 0 1 0 0 1 0

Table 3: Education Transformation

Once we have all the transformations, we can then perform the aggregations that will
provide us with the total numbers to be used in the score calculation equations. The
aggregation dataset is just one row with all the aggregates as shown in Table 4. The values
for the aggregates correspond to the same values in the example provided in Section 4.2.
Spark performs these aggregations in parallel for every partition. The aggregation is followed
by a collect call which triggers Spark to collect all the aggregates from the worker nodes
into the master node which then gets stored in a local variable representing Table 4. The
scores are then calculated using the local variable. The highest scoring AC (Anonymization
Cut) tree is selected, its root is removed from the AC set, and its children’s subtrees are
added.
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Algorithm 4: Parallel Anonymization

Input: originalPathMap, newPathMap, AC, partitionedDataset, k
Output: anonymizedCuts

1 Function Anonymize(originalPathMap, newPathMap, AC, k):
2 transformedPartitionedDataset ← Transform(QIDs, partitionedDataset);
3 bestScoreAC ← FindBestScore(transformedPartitionedDataset);
4 bestScoreChildren ← GetChildren(bestScoreAC);
5 newAC ← AC − bestScoreAC + bestScoreChildren;
6 originalMap ← originalPathMap;
7 newMap ← Dequeue(bestScoreAC);
8 generalizedDataset ← Generalize(partitionedDataset, newPathMap);
9 kCurrent ← CalculateK(generalizedDataset);

10 if kCurrent > k then
/* too general, repeat */

11 return Anonymize(originalMap, newMap, newAC)

12 else if kCurrent < k then
/* violated k, return map before generalization */

13 return originalPathMap;

14 else
15 return newMap;

The dataset is then generalized to the root of all respective AC trees, k is calculated,
and the iteration continues until k is violated. The main algorithm can be summarized in
Algorithm 4 above.

Edu Any Edu Any Y Edu Any N Edu WPS Edu PS Edu WPS Y Edu WPS N Edu PS Y Edu PS N

34 21 13 16 18 5 11 16 2

Table 4: Education Aggregation

The path map that gets returned from Line 13 or 15 in Algorithm 4 once it is done can
look as follows:

education: Map(

7th-8th: Queue(Elementary, 7th-8th),

Bachelors: Queue(University, Bachelors), ...

),

native-country: Map(

Vietnam: Queue(Asia, Southeastern-Asia, Vietnam), ...

),

...

This anonymization map can then be passed to a Spark User Defined Function (UDF)
that gets executed on every cell. For education column it will generalize 7th-8th values to
Elementary and Bachelors to University. For native country column, Vietnam values will
be generalized to Asia.
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4.5 Performance enhancements

Multiple considerations have been taken into account in order to improve performance. The
first was generating path maps from taxonomy trees in the preprocessing step in order to
speed up tree lookups performed during generalization. I also had to perform multiple
experiments with a variety of different partition numbers in order to achieve the best per-
formance. The best performance was achieved when number of partitions was set to total
number of cores in the cluster. This finding corroborates findings of [16]. Tail recursion
was also preferred over looping as a performance enhancement technique. Dataset was also
partitioned over an arbitrary unique rowId assigned to every row in the preprocessing stage.
When partitioning is left completely up to Spark by only providing the number of parti-
tions, it was found that this does not guarantee an equally distributed number of partitions
across all worker nodes. An even distribution was achieved by partitioning over a unique
ID column as well as providing the number of partitions.

Lastly, the biggest improvement enhancement was achieved by performing the aggrega-
tions of all taxonomy trees at once, in parallel, and then collecting the total aggregates to
a local variable. The brute-force attempt of the implementation was only performing the
aggregations of individual QIDs in parallel and then collecting aggregates for each QID
separately. By doing all aggregations of all taxonomy trees in parallel, which essentially
reduced aggregations and collect calls to only one per iteration, runtime was reduced from
4 hours to 15 minutes on a 5-million row dataset in an 8-node cluster. In Section 5 I review
those performance results in detail.

5 Experimental Evaluation

Experiments were performed on an OpenStack cluster with 1, 2, 4, 8 and 16 worker nodes.
Each node had 4 vCPUs, 8 GB RAM and 32 GB disk size. All nodes were running Spark
version 2.4.2, Scala 12.10 and Java 8.

The dataset used is the same Adult dataset referenced in [16] however it was enlarged
to 4 different datasets of 250,000, 5 million, 10 million and 20 million-row datasets. The
enlargement process involved writing a program to inject rows using a random value from
the list of distinct values in the original dataset for every column.

A total of 8 categorical QIDs were specified: education, marital status, occupation,
native country, workclass, relationship, race and sex. The k value was set to 100.

The first experiment was determining the number of partitions. Using a 5 million-row
dataset and running on an 8-node cluster, the following variations were tested for number
of partitions: 16, 32 (total number of vCPUs in the cluster), 50, 100, 200 (Spark’s default
number of partitions), 300, 400 and 528.

As shown in Figure 3, the best performance was achieved when the number of partitions
was set to the total number of vCPUs in the cluster. The dashed vertical line represents
the best performing and the dotted represents Spark’s default. The most likely explanation
for this result is that when partitions are fewer than number of CPUs, not all cores are
utilized. While when the number of partitions is much higher than number of cores, the
partitioned dataset becomes too small to the point that the overhead of partitioning and
scheduling the tasks exceed the time it takes to execute the task itself.

The following experiment evaluated the scale-up of Top-Down Specialization on Spark.
The algorithm was executed using 3 dataset sizes on a 16-node cluster and 64 partitions.
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Figure 3: Determining Best Number of Partitions

When the dataset size increased by 100% from 5 to 10 to 20 million rows, the runtime
only increased by 55-65%. This result is shown in Figure 4.
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Figure 4: Scale-up of TDS on Spark

The next experiment assessed the speedup of the algorithm. Speed up experiments
were conducted using four different dataset sizes: 250 thousand rows as well as 5, 10 and
20-million rows. As shown in Figure 5, the speedup significantly improved as the size of the
dataset became larger. The 20-million row dataset provided the closest speedup to optimal.
However, for the 250-thousand row dataset, increasing the number of nodes beyond 8 did
not make a difference since the dataset was too small to be partitioned further. This is
also most likely attributable to the assumption mentioned before where the overhead from
partitioning the dataset and scheduling the task exceeded the computation cost of the task
itself.
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Figure 5: Speed-up curves for TDS
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In comparison with the original paper [16], we can see in Figure 6 that their speedup
was slightly better for 5-million row dataset. Note that [16] used size on disk for measure-
ment which was equivalent to this paper’s 5-million row dataset. Also note that the test
environment used in the original paper was slightly different as the authors installed Spark
on Docker containers on the same machine. It is presumed that the communication be-
tween Docker images on the same machine will not suffer from the communication overhead
between workers in a cluster where this paper’s implementation was evaluated.

Finally, a test was performed on a 32-core machine and 128 GB RAM for the 10-million
row dataset. As shown in Figure 7, the 10-million row running on a cluster had a much
better speedup compared to the same dataset running on a 32-core machine. The most
likely reason for this is as the dataset becomes larger, and the number of cores increases,
the bus communication traffic becomes congested which serves as a bottleneck not present in
a cluster environment. Spark documentation also shows that running locally on the same
machine is meant for testing purposes only and some out-of-the-box Spark performance
enhancements are only available for cluster environments.
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6 Conclusions

This paper’s implementation had speedups close to optimal for larger datasets of 20-million
rows. The scale up curve was also virtually flat; when dataset size doubled, runtime only
increased by half. In order to achieve the best performance, Spark partitions need to
equal total number of cores in a cluster. Top-Down Specialization on Spark also performed
better in a cluster environment compared to local machines even when locally the cores
were more powerful than on the cluster. For iterative algorithms, minimizing the number
of aggregations and collection from worker nodes to only one yields the best performance
results. Even when the aggregations are performed on wide tables of ≈100 columns.

6.1 Summary of Contributions

This paper enhanced the preprocessing stage by implementing an algorithm that built path
maps from taxonomy trees. This provided the option of performing look-ups in constant
time during the iterations. It also evaluated the performance of Top-Down Specialization
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algorithm on Spark on datasets up to 4-times larger than tested in [16]. Evaluations of the
algorithm were also made in a cluster environment which is more typical for production
applications.

6.2 Future Research

The Top-Down Specialization algorithm starts by generalizing all values to the root of
taxonomy trees. This introduces redundant iterations for larger datasets as it will iterate
all the way from k = n, where n is the number of records, to a much lower number
such as k = 100. Future research can enhance algorithms such as Hybrid Top-Down and
Bottom-Up algorithm proposed in [17] by adapting it for Spark so that not all records get
generalized to the root before starting specialization. It is also worth it to research starting
the generalization at a level deeper than the root to avoid these redundant iterations.
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